Newer
Older
#include "../NifProps/bhkRigidBodyInterface.h"
#ifdef _DEBUG
#include <assert.h>
#include <crtdbg.h>
#define ASSERT _ASSERTE
#else
#define ASSERT(x)
#endif
Gundalf
committed
static Class_ID SCUBA_CLASS_ID(0x6d3d77ac, 0x79c939a9);
static Class_ID BHKRIGIDBODYMODIFIER_CLASS_ID(0x398fd801, 0x303e44e5);
Gundalf
committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
enum
{
CAPSULE_RADIUS = 0,
CAPSULE_HEIGHT = 1,
};
/*
To mimic the "Reset Transform" and "Reset Scale" behavior, the following code snippet should help:
Interface *ip = theResetScale.ip;
TimeValue t = ip->GetTime();
Control *tmControl = node->GetTMController();
BOOL lookAt = tmControl->GetRollController() ? TRUE : FALSE;
Matrix3 ntm = node->GetNodeTM(t);
Matrix3 ptm = node->GetParentTM(t);
Matrix3 rtm = ntm * Inverse(ptm);
Matrix3 otm(1);
Quat rot;
// Grab the trans, and then set it to 0
Point3 trans = rtm.GetTrans();
rtm.NoTrans();
// We're only doing scale - save out the
// rotation so we can put it back
AffineParts parts;
decomp_affine(rtm, &parts);
rot = parts.q;
// Build the offset tm
otm.PreTranslate(node->GetObjOffsetPos());
if (node->GetObjOffsetRot()!=IdentQuat()) {
PreRotateMatrix(otm,node->GetObjOffsetRot());
}
Point3 tS(1,1,1);
if ( node->GetObjOffsetScale().s != tS ) {
ApplyScaling(otm,node->GetObjOffsetScale());
}
// Apply the relative tm to the offset
otm = otm * rtm;
decomp_affine(otm, &parts);
node->SetObjOffsetPos(parts.t);
node->SetObjOffsetScale(ScaleValue(parts.k*parts.f,parts.u));
// Now set the transform controller with a matrix
// that has no rotation or scale
rtm.IdentityMatrix();
rtm.SetTrans(trans);
if (!lookAt) {
PreRotateMatrix(rtm,rot);
}
// But first, want to keep children stationary.
Matrix3 ttm = rtm*ptm;
for (int i=0; iNumberOfChildren(); i++) {
Control *tmc = node->GetChildNode(i)->GetTMController();
Matrix3 oldtm = node->GetChildNode(i)->GetNodeTM(t);
SetXFormPacket pk(oldtm,ttm);
tmc->SetValue(t,&pk);
}
SetXFormPacket pckt(rtm);
tmControl->SetValue(t,&pckt);
To mimic the "Align to world" behavior, the following code snippet should help:
AffineParts parts;
TimeValue currtime = m_pInterface->GetTime();
Matrix3 m = pNode->GetNodeTM(currtime);
decomp_affine(m, &parts);
if (rotobj) {
// if "affect obj only" we move it simply thus:
pNode->SetObjOffsetRot(Inverse(parts.q));
} else {
// otherwise, "affect pivot only" we would do:
IdentityTM ident;
Matrix3 wax = ident;
wax.SetTrans(m.GetTrans()); // world aligned axis, centered at pivot point
pNode->Rotate(currtime, wax, Inverse(parts.q),TRUE,FALSE, PIV_PIVOT_ONLY);
}
m_pInterface->RedrawViews(m_pInterface->GetTime(),REDRAW_NORMAL,NULL);
*/
int Exporter::addVertex(vector<Vector3> &verts, vector<Vector3> &vnorms, const Point3 &pt, const Point3 &norm)
{
for (int i=0; i<verts.size(); i++)
{
if (equal(verts[i], pt, mWeldThresh) &&
equal(vnorms[i], norm, 0))
return i;
}
verts.push_back(Vector3(pt.x, pt.y, pt.z));
vnorms.push_back(Vector3(norm.x, norm.y, norm.z));
return verts.size()-1;
}
void Exporter::addFace(Triangles &tris, vector<Vector3> &verts, vector<Vector3> &vnorms,
Point3 pt = VectorTransform(mesh->verts[ mesh->faces[ face ].v[ vi[i] ] ], tm);
Point3 norm = VectorTransform(getVertexNormal(mesh, face, mesh->getRVertPtr(mesh->faces[ face ].v[ vi[i] ])), tm);
tri[i] = addVertex(verts, vnorms, pt, norm);
Gundalf
committed
/*
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
bool Exporter::makeCollisionHierarchy(NiNodeRef &parent, INode *node, TimeValue t)
{
Matrix3 tm = node->GetObjTMAfterWSM(t);
// Order of the vertices. Get 'em counter clockwise if the objects is
// negatively scaled.
int vi[3];
if (TMNegParity(tm))
{
vi[0] = 2;
vi[1] = 1;
vi[2] = 0;
} else
{
vi[0] = 0;
vi[1] = 1;
vi[2] = 2;
}
ObjectState os = node->EvalWorldState(t);
if (!os.obj || os.obj->SuperClassID()!=GEOMOBJECT_CLASS_ID)
return Error;
Object *obj = os.obj;
if (!obj->CanConvertToType(Class_ID(TRIOBJ_CLASS_ID, 0)))
return Error;
TriObject *tri = (TriObject *)obj->ConvertToType(t, Class_ID(TRIOBJ_CLASS_ID, 0));
if (!tri)
return false;
Mesh *mesh = &tri->GetMesh();
mesh->buildNormals();
// setup shape data
vector<Vector3> verts;
vector<Vector3> vnorms;
Triangles tris;
for (int i=0; i<mesh->getNumFaces(); i++)
addFace(tris, verts, vnorms, i, vi, mesh);
TriStrips strips;
strippify(strips, verts, vnorms, tris);
NiTriStripsDataRef data = makeTriStripsData(strips);
data->SetVertices(verts);
data->SetNormals(vnorms);
// setup shape
bhkNiTriStripsShapeRef shape = DynamicCast<bhkNiTriStripsShape>(CreateBlock("bhkNiTriStripsShape"));
shape->SetNumStripsData(1);
shape->SetStripsData(0, data);
shape->SetMaterial(mtl);
//array<float, 2> unknownFloats1;
//uint i1 = 0x3DCCCCCD;
//uint i2 = 0x004ABE60;
//unknownFloats1[0] = *((float*)&i1);
//unknownFloats1[1] = *((float*)&i2);
//shape->SetUnknownFloats1(unknownFloats1);
//array<float, 3> unknownFloats2;
//unknownFloats2[0] = 1;
//unknownFloats2[1] = 1;
//unknownFloats2[2] = 1;
//shape->SetUnknownFloats2(unknownFloats2);
//array<uint, 5> unknownInts1;
//unknownInts1[4] = 1;
//shape->SetUnknownInts1(unknownInts1);
//vector<uint> unknownInts3;
//unknownInts3.resize(1);
//shape->SetUnknownInts3(unknownInts3);
// setup collision object
bhkCollisionObjectRef co = DynamicCast<bhkCollisionObject>(CreateBlock("bhkCollisionObject"));
// setup body
bhkRigidBodyTRef body = DynamicCast<bhkRigidBodyT>(CreateBlock("bhkRigidBodyT"));
Vector3 trans;
QuaternionXYZW q;
nodeTransform(q, trans, node, t, false);
body->SetRotation(q);
body->SetTranslation(Vector3(trans.x/7, trans.y/7, trans.z/7));
body->SetLayer(lyr);
body->SetLayerCopy(lyr);
body->SetMotionSystem(msys);
body->SetQualityType(qtype);
body->SetMass(mass);
body->SetLinearDamping(lindamp);
body->SetAngularDamping(angdamp);
body->SetFriction(frict);
body->SetRestitution(resti);
body->SetMaxLinearVelocity(maxlinvel);
body->SetMaxAngularVelocity(maxangvel);
body->SetPenetrationDepth(pendepth);
body->SetCenter(center);
// link
parent->SetCollisionObject(DynamicCast<NiCollisionObject>(co));
co->SetParent(parent);
co->SetBody(DynamicCast<NiObject>(body));
body->SetShape(DynamicCast<bhkShape>(shape));
if (obj != tri)
tri->DeleteMe();
return true;
}
Gundalf
committed
*/
Exporter::Result Exporter::exportCollision(NiNodeRef &parent, INode *node)
{
if (isHandled(node))
return Exporter::Skip;
ProgressUpdate(Collision, FormatText("'%s' Collision", node->GetName()));
Gundalf
committed
// marked as collision?
bool coll = isCollision(node);
bool local = !mFlattenHierarchy;
NiNodeRef nodeParent = mFlattenHierarchy ? mNiRoot : parent;
Gundalf
committed
NiNodeRef newParent;
Gundalf
committed
{
newParent = nodeParent; // always have collision one level up?
Gundalf
committed
TimeValue t = 0;
Matrix3 tm = getTransform(node, t, local);
Gundalf
committed
bhkRigidBodyRef body = makeCollisionBody(node);
bhkShapeRef shape = makeCollisionShape(node, tm, body);
if (shape)
{
body->SetShape(DynamicCast<bhkShape>(shape));
Matrix44 rm4 = TOMATRIX4(tm, false);
Vector3 trans; Matrix33 rm; float scale;
rm4.Decompose(trans, rm, scale);
QuaternionXYZW q = TOQUATXYZW(rm.AsQuaternion());
body->SetRotation(q);
body->SetTranslation(trans / Exporter::bhkScaleFactor);
bhkCollisionObjectRef co = new bhkCollisionObject();
co->SetBody(DynamicCast<NiObject>(body));
Gundalf
committed
Gundalf
committed
// link
newParent->SetCollisionObject(DynamicCast<NiCollisionObject>(co));
}
} else if (isCollisionGroup(node) && !mFlattenHierarchy) {
newParent = makeNode(nodeParent, node);
} else {
newParent = nodeParent;
}
Gundalf
committed
for (int i=0; i<node->NumberOfChildren(); i++)
{
Result result = exportCollision(newParent, node->GetChildNode(i));
if (result!=Ok && result!=Skip)
return result;
}
return Ok;
}
bhkRigidBodyRef Exporter::makeCollisionBody(INode *node)
{
// get data from node
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
int lyr = NP_DEFAULT_HVK_LAYER;
int mtl = NP_DEFAULT_HVK_MATERIAL;
int msys = NP_DEFAULT_HVK_MOTION_SYSTEM;
int qtype = NP_DEFAULT_HVK_QUALITY_TYPE;
float mass = NP_DEFAULT_HVK_MASS;
float lindamp = NP_DEFAULT_HVK_LINEAR_DAMPING;
float angdamp = NP_DEFAULT_HVK_ANGULAR_DAMPING;
float frict = NP_DEFAULT_HVK_FRICTION;
float maxlinvel = NP_DEFAULT_HVK_MAX_LINEAR_VELOCITY;
float maxangvel = NP_DEFAULT_HVK_MAX_ANGULAR_VELOCITY;
float resti = NP_DEFAULT_HVK_RESTITUTION;
float pendepth = NP_DEFAULT_HVK_PENETRATION_DEPTH;
Vector3 center(0,0,0);
if (bhkRigidBodyInterface *irb = (bhkRigidBodyInterface *)node->GetObjectRef()->GetInterface(BHKRIGIDBODYINTERFACE_DESC))
{
mass = irb->GetMass(0);
frict = irb->GetFriction(0);
resti = irb->GetRestitution(0);
lyr = irb->GetLayer(0);
msys = irb->GetMotionSystem(0);
qtype = irb->GetQualityType(0);
lindamp = irb->GetLinearDamping(0);
angdamp = irb->GetAngularDamping(0);
maxlinvel = irb->GetMaxLinearVelocity(0);
pendepth = irb->GetPenetrationDepth(0);
maxangvel = irb->GetMaxAngularVelocity(0);
}
else if (npIsCollision(node))
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
{
// Handle compatibility
npGetProp(node, NP_HVK_MASS_OLD, mass, NP_DEFAULT_HVK_EMPTY);
if (mass == NP_DEFAULT_HVK_EMPTY)
npGetProp(node, NP_HVK_MASS, mass, NP_DEFAULT_HVK_MASS);
npGetProp(node, NP_HVK_FRICTION_OLD, frict, NP_DEFAULT_HVK_EMPTY);
if (frict == NP_DEFAULT_HVK_EMPTY)
npGetProp(node, NP_HVK_FRICTION, frict, NP_DEFAULT_HVK_FRICTION);
npGetProp(node, NP_HVK_RESTITUTION_OLD, resti, NP_DEFAULT_HVK_EMPTY);
if (resti == NP_DEFAULT_HVK_EMPTY)
npGetProp(node, NP_HVK_RESTITUTION, resti, NP_DEFAULT_HVK_RESTITUTION);
npGetProp(node, NP_HVK_LAYER, lyr, NP_DEFAULT_HVK_LAYER);
npGetProp(node, NP_HVK_MATERIAL, mtl, NP_DEFAULT_HVK_MATERIAL);
npGetProp(node, NP_HVK_MOTION_SYSTEM, msys, NP_DEFAULT_HVK_MOTION_SYSTEM);
npGetProp(node, NP_HVK_QUALITY_TYPE, qtype, NP_DEFAULT_HVK_QUALITY_TYPE);
npGetProp(node, NP_HVK_LINEAR_DAMPING, lindamp, NP_DEFAULT_HVK_LINEAR_DAMPING);
npGetProp(node, NP_HVK_ANGULAR_DAMPING, angdamp, NP_DEFAULT_HVK_ANGULAR_DAMPING);
npGetProp(node, NP_HVK_MAX_LINEAR_VELOCITY, maxlinvel, NP_DEFAULT_HVK_MAX_LINEAR_VELOCITY);
npGetProp(node, NP_HVK_MAX_ANGULAR_VELOCITY, maxangvel, NP_DEFAULT_HVK_MAX_ANGULAR_VELOCITY);
npGetProp(node, NP_HVK_PENETRATION_DEPTH, pendepth, NP_DEFAULT_HVK_PENETRATION_DEPTH);
npGetProp(node, NP_HVK_CENTER, center);
}
else
{
// Check self to see if is one of our bhkXXXObject classes
if (Object* obj = node->GetObjectRef())
{
if (obj->SuperClassID() == HELPER_CLASS_ID &&
obj->ClassID().PartB() == BHKRIGIDBODYCLASS_DESC.PartB())
{
// TODO: do standard body export
}
}
// else check redirection
}
Gundalf
committed
// setup body
bhkRigidBodyRef body = CreateNiObject<bhkRigidBodyT>();
Gundalf
committed
body->SetLayer(OblivionLayer(lyr));
body->SetLayerCopy(OblivionLayer(lyr));
body->SetMotionSystem(MotionSystem(msys));
body->SetQualityType(MotionQuality(qtype));
Gundalf
committed
body->SetMass(mass);
body->SetLinearDamping(lindamp);
body->SetAngularDamping(angdamp);
body->SetFriction(frict);
body->SetRestitution(resti);
body->SetMaxLinearVelocity(maxlinvel);
body->SetMaxAngularVelocity(maxangvel);
body->SetPenetrationDepth(pendepth);
body->SetCenter(center);
QuaternionXYZW q; q.x = q.y = q.z = 0; q.w = 1.0f;
body->SetRotation(q);
Gundalf
committed
return body;
}
bhkShapeRef Exporter::makeCollisionShape(INode *node, Matrix3& tm, bhkRigidBodyRef body)
Gundalf
committed
{
bhkShapeRef shape;
Gundalf
committed
TimeValue t = 0;
ObjectState os = node->EvalWorldState(t);
if (os.obj->ClassID() == SCUBA_CLASS_ID)
shape = makeCapsuleShape(node, os.obj, tm);
else if (os.obj->ClassID() == Class_ID(BOXOBJ_CLASS_ID, 0))
shape = makeBoxShape(node, os.obj, tm);
else if (os.obj->ClassID() == Class_ID(SPHERE_CLASS_ID, 0))
shape = makeSphereShape(node, os.obj, tm);
else if (os.obj->SuperClassID() == GEOMOBJECT_CLASS_ID)
else if (os.obj->ClassID() == BHKLISTOBJECT_CLASS_ID)
shape = makeListShape(node, tm, body);
Gundalf
committed
return shape;
}
bhkShapeRef Exporter::makeBoxShape(INode *node, Object *obj, Matrix3& tm)
Gundalf
committed
{
Gundalf
committed
float length = 0;
float height = 0;
float width = 0;
IParamArray *params = obj->GetParamBlock();
params->GetValue(obj->GetParamBlockIndex(BOXOBJ_LENGTH), 0, length, FOREVER);
params->GetValue(obj->GetParamBlockIndex(BOXOBJ_HEIGHT), 0, height, FOREVER);
params->GetValue(obj->GetParamBlockIndex(BOXOBJ_WIDTH), 0, width, FOREVER);
Vector3 dim(width * scale[0], length * scale[1], height * scale[2]);
Gundalf
committed
// Adjust translation for center of z axis in box
tm.Translate(Point3(0.0, 0.0, dim.z / 2.0));
dim /= (Exporter::bhkScaleFactor * 2);
box->SetDimensions(dim);
int mtl = 0;
npGetProp(node, NP_HVK_MATERIAL, mtl, NP_DEFAULT_HVK_MATERIAL);
box->SetMaterial(HavokMaterial(mtl));
return bhkShapeRef(DynamicCast<bhkSphereRepShape>(box));
Gundalf
committed
}
bhkShapeRef Exporter::makeSphereShape(INode *node, Object *obj, Matrix3& tm)
Gundalf
committed
{
Point3 scale = GetScale(tm);
float s = (scale[0] + scale[1] + scale[2]) / 3.0;
Gundalf
committed
float radius = 0;
IParamArray *params = obj->GetParamBlock();
params->GetValue(obj->GetParamBlockIndex(SPHERE_RADIUS), 0, radius, FOREVER);
bhkSphereShapeRef sphere = new bhkSphereShape();
sphere->SetRadius(radius * s);
Gundalf
committed
int mtl = 0;
npGetProp(node, NP_HVK_MATERIAL, mtl, NP_DEFAULT_HVK_MATERIAL);
sphere->SetMaterial(HavokMaterial(mtl));
return bhkShapeRef(DynamicCast<bhkSphereRepShape>(sphere));
Gundalf
committed
}
bhkShapeRef Exporter::makeCapsuleShape(INode *node, Object *obj, Matrix3& tm)
Gundalf
committed
{
Point3 scale = GetScale(tm);
float s = (scale[0] + scale[1] + scale[2]) / 3.0;
Gundalf
committed
float radius = 0;
float height = 0;
IParamArray *params = obj->GetParamBlock();
params->GetValue(obj->GetParamBlockIndex(CAPSULE_RADIUS), 0, radius, FOREVER);
params->GetValue(obj->GetParamBlockIndex(CAPSULE_HEIGHT), 0, height, FOREVER);
bhkCapsuleShapeRef capsule = CreateNiObject<bhkCapsuleShape>();
Gundalf
committed
capsule->SetRadius(radius);
capsule->SetRadius1(radius);
capsule->SetRadius2(radius);
int mtl = 0;
npGetProp(node, NP_HVK_MATERIAL, mtl, NP_DEFAULT_HVK_MATERIAL);
capsule->SetMaterial(HavokMaterial(mtl));
return bhkShapeRef(DynamicCast<bhkSphereRepShape>(capsule));
Gundalf
committed
}
bhkShapeRef Exporter::makeTriStripsShape(INode *node, Matrix3& tm)
Gundalf
committed
{
TimeValue t = 0;
Matrix3 sm = ScaleMatrix( GetScale(tm) );
//Matrix3 tm = node->GetObjTMAfterWSM(t);
Gundalf
committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
// Order of the vertices. Get 'em counter clockwise if the objects is
// negatively scaled.
int vi[3];
if (TMNegParity(tm))
{
vi[0] = 2;
vi[1] = 1;
vi[2] = 0;
} else
{
vi[0] = 0;
vi[1] = 1;
vi[2] = 2;
}
ObjectState os = node->EvalWorldState(t);
TriObject *tri = (TriObject *)os.obj->ConvertToType(t, Class_ID(TRIOBJ_CLASS_ID, 0));
if (!tri)
return false;
Mesh *mesh = &tri->GetMesh();
mesh->buildNormals();
// setup shape data
vector<Vector3> verts;
vector<Vector3> vnorms;
Triangles tris;
for (int i=0; i<mesh->getNumFaces(); i++)
Gundalf
committed
//TriStrips strips;
//strippify(strips, verts, vnorms, tris);
//NiTriStripsDataRef data = makeTriStripsData(strips);
NiTriStripsDataRef data = new NiTriStripsData(tris, Exporter::mUseAlternateStripper);
Gundalf
committed
data->SetVertices(verts);
data->SetNormals(vnorms);
int lyr = OL_STATIC;
npGetProp(node, NP_HVK_LAYER, lyr, NP_DEFAULT_HVK_LAYER);
Gundalf
committed
// setup shape
bhkNiTriStripsShapeRef shape = StaticCast<bhkNiTriStripsShape>(bhkNiTriStripsShape::Create());
shape->SetNumStripsData(1);
shape->SetStripsData(0, data);
shape->SetNumDataLayers(1);
shape->SetOblivionLayer(0, OblivionLayer(lyr));
int mtl;
npGetProp(node, NP_HVK_MATERIAL, mtl, NP_DEFAULT_HVK_MATERIAL);
shape->SetMaterial(HavokMaterial(mtl));
//if (tri != os.obj)
// tri->DeleteMe();
return StaticCast<bhkShape>(shape);
Gundalf
committed
}
Exporter::Result Exporter::scanForCollision(INode *node)
{
if (NULL == node)
return Exporter::Skip;
// Get the bhk RigidBody modifier if available and then get the picked node.
if (Modifier * mod = GetbhkCollisionModifier(node)){
if (IParamBlock2* pblock = (IParamBlock2*)mod->GetReference(0)) {
if (INode *collMesh = pblock->GetINode(0, 0)) {
mCollisionNodes.insert(collMesh);
} else {
if (mSceneCollisionNode != NULL) {
if (mExportCollision) {
throw runtime_error("There are more than one Collision mesh found at the Scene Level.");
}
} else {
mSceneCollisionNode = node;
}
}
}
}
// Check self to see if is one of our bhkXXXObject classes
if (Object* obj = node->GetObjectRef())
{
if (obj->ClassID() == BHKLISTOBJECT_CLASS_ID)
{
mCollisionNodes.insert(node);
const int PB_MESHLIST = 1;
IParamBlock2* pblock2 = obj->GetParamBlockByID(0);
int nBlocks = pblock2->Count(PB_MESHLIST);
for (int i = 0;i < pblock2->Count(PB_MESHLIST); i++) {
INode *tnode = NULL;
pblock2->GetValue(PB_MESHLIST,0,tnode,FOREVER,i);
if (tnode != NULL) {
mCollisionNodes.insert(tnode);
markAsHandled(tnode); // dont process collision since the list will
}
}
}
else if (obj->SuperClassID() == HELPER_CLASS_ID &&
obj->ClassID().PartB() == BHKRIGIDBODYCLASS_DESC.PartB())
{
mCollisionNodes.insert(node);
}
if (npIsCollision(node))
{
mCollisionNodes.insert(node);
}
for (int i=0; i<node->NumberOfChildren(); i++) {
scanForCollision(node->GetChildNode(i));
}
return Exporter::Ok;
}
bool Exporter::isHandled(INode *node)
{
return (mHandledNodes.find(node) != mHandledNodes.end());
}
bool Exporter::markAsHandled(INode* node)
{
mHandledNodes.insert(node);
return true;
}
bool Exporter::isCollision(INode *node)
{
return (mCollisionNodes.find(node) != mCollisionNodes.end());
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
}
bhkShapeRef Exporter::makeListShape(INode *node, Matrix3& tm, bhkRigidBodyRef body)
{
const int PB_MATERIAL = 0;
const int PB_MESHLIST = 1;
IParamBlock2* pblock2 = node->GetObjectRef()->GetParamBlockByID(0);
int nBlocks = pblock2->Count(PB_MESHLIST);
if (nBlocks > 0)
{
if (bhkRigidBodyInterface *irb = (bhkRigidBodyInterface *)node->GetObjectRef()->GetInterface(BHKRIGIDBODYINTERFACE_DESC))
{
int mass = irb->GetMass(0);
float frict = irb->GetFriction(0);
float resti = irb->GetRestitution(0);
int lyr = irb->GetLayer(0);
int msys = irb->GetMotionSystem(0);
int qtype = irb->GetQualityType(0);
float lindamp = irb->GetLinearDamping(0);
float angdamp = irb->GetAngularDamping(0);
float maxlinvel = irb->GetMaxLinearVelocity(0);
float maxangvel = irb->GetMaxAngularVelocity(0);
float pendepth = irb->GetPenetrationDepth(0);
body->SetLayer(OblivionLayer(lyr));
body->SetLayerCopy(OblivionLayer(lyr));
body->SetMotionSystem(MotionSystem(msys));
body->SetQualityType(MotionQuality(qtype));
body->SetMass(mass);
body->SetLinearDamping(lindamp);
body->SetAngularDamping(angdamp);
body->SetFriction(frict);
body->SetRestitution(resti);
body->SetMaxLinearVelocity(maxlinvel);
body->SetMaxAngularVelocity(maxangvel);
body->SetPenetrationDepth(pendepth);
}
bhkListShapeRef shape = new bhkListShape();
int mtl = pblock2->GetInt(PB_MATERIAL, 0, 0);
shape->SetMaterial(HavokMaterial(mtl));
vector<bhkShapeRef> shapes;
for (int i = 0; i < nBlocks; i++) {
INode *tnode = NULL;
pblock2->GetValue(PB_MESHLIST,0,tnode,FOREVER,i);
if (tnode != NULL)
{
bhkShapeRef subshape = makeCollisionShape(tnode, tm, body);
if (subshape)
shapes.push_back(subshape);
}
}
shape->SetSubShapes(shapes);
if (shapes.size() == 1) // ignore the list when only one object is present
{
return shapes[0];
}
else if (!shapes.empty())
{
return bhkShapeRef(shape);
}
}
return bhkShapeRef();