Newer
Older
#ifdef _DEBUG
#include <assert.h>
#include <crtdbg.h>
#define ASSERT _ASSERTE
#else
#define ASSERT(x)
#endif
Gundalf
committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
static Class_ID SCUBA_CLASS_ID(0x6d3d77ac, 0x79c939a9);
enum
{
CAPSULE_RADIUS = 0,
CAPSULE_HEIGHT = 1,
};
/*
To mimic the "Reset Transform" and "Reset Scale" behavior, the following code snippet should help:
Interface *ip = theResetScale.ip;
TimeValue t = ip->GetTime();
Control *tmControl = node->GetTMController();
BOOL lookAt = tmControl->GetRollController() ? TRUE : FALSE;
Matrix3 ntm = node->GetNodeTM(t);
Matrix3 ptm = node->GetParentTM(t);
Matrix3 rtm = ntm * Inverse(ptm);
Matrix3 otm(1);
Quat rot;
// Grab the trans, and then set it to 0
Point3 trans = rtm.GetTrans();
rtm.NoTrans();
// We're only doing scale - save out the
// rotation so we can put it back
AffineParts parts;
decomp_affine(rtm, &parts);
rot = parts.q;
// Build the offset tm
otm.PreTranslate(node->GetObjOffsetPos());
if (node->GetObjOffsetRot()!=IdentQuat()) {
PreRotateMatrix(otm,node->GetObjOffsetRot());
}
Point3 tS(1,1,1);
if ( node->GetObjOffsetScale().s != tS ) {
ApplyScaling(otm,node->GetObjOffsetScale());
}
// Apply the relative tm to the offset
otm = otm * rtm;
decomp_affine(otm, &parts);
node->SetObjOffsetPos(parts.t);
node->SetObjOffsetScale(ScaleValue(parts.k*parts.f,parts.u));
// Now set the transform controller with a matrix
// that has no rotation or scale
rtm.IdentityMatrix();
rtm.SetTrans(trans);
if (!lookAt) {
PreRotateMatrix(rtm,rot);
}
// But first, want to keep children stationary.
Matrix3 ttm = rtm*ptm;
for (int i=0; iNumberOfChildren(); i++) {
Control *tmc = node->GetChildNode(i)->GetTMController();
Matrix3 oldtm = node->GetChildNode(i)->GetNodeTM(t);
SetXFormPacket pk(oldtm,ttm);
tmc->SetValue(t,&pk);
}
SetXFormPacket pckt(rtm);
tmControl->SetValue(t,&pckt);
To mimic the "Align to world" behavior, the following code snippet should help:
AffineParts parts;
TimeValue currtime = m_pInterface->GetTime();
Matrix3 m = pNode->GetNodeTM(currtime);
decomp_affine(m, &parts);
if (rotobj) {
// if "affect obj only" we move it simply thus:
pNode->SetObjOffsetRot(Inverse(parts.q));
} else {
// otherwise, "affect pivot only" we would do:
IdentityTM ident;
Matrix3 wax = ident;
wax.SetTrans(m.GetTrans()); // world aligned axis, centered at pivot point
pNode->Rotate(currtime, wax, Inverse(parts.q),TRUE,FALSE, PIV_PIVOT_ONLY);
}
m_pInterface->RedrawViews(m_pInterface->GetTime(),REDRAW_NORMAL,NULL);
*/
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
int Exporter::addVertex(vector<Vector3> &verts, vector<Vector3> &vnorms, const Point3 &pt, const Point3 &norm)
{
for (int i=0; i<verts.size(); i++)
{
if (equal(verts[i], pt, mWeldThresh) &&
equal(vnorms[i], norm, 0))
return i;
}
verts.push_back(Vector3(pt.x, pt.y, pt.z));
vnorms.push_back(Vector3(norm.x, norm.y, norm.z));
return verts.size()-1;
}
void Exporter::addFace(Triangles &tris, vector<Vector3> &verts, vector<Vector3> &vnorms,
int face, const int vi[3], Mesh *mesh)
{
Triangle tri;
for (int i=0; i<3; i++)
{
tri[i] = addVertex(verts, vnorms,
mesh->verts[ mesh->faces[ face ].v[ vi[i] ] ],
getVertexNormal(mesh, face, mesh->getRVertPtr(mesh->faces[ face ].v[ vi[i] ])));
}
tris.push_back(tri);
}
Gundalf
committed
/*
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
bool Exporter::makeCollisionHierarchy(NiNodeRef &parent, INode *node, TimeValue t)
{
Matrix3 tm = node->GetObjTMAfterWSM(t);
// Order of the vertices. Get 'em counter clockwise if the objects is
// negatively scaled.
int vi[3];
if (TMNegParity(tm))
{
vi[0] = 2;
vi[1] = 1;
vi[2] = 0;
} else
{
vi[0] = 0;
vi[1] = 1;
vi[2] = 2;
}
ObjectState os = node->EvalWorldState(t);
if (!os.obj || os.obj->SuperClassID()!=GEOMOBJECT_CLASS_ID)
return Error;
Object *obj = os.obj;
if (!obj->CanConvertToType(Class_ID(TRIOBJ_CLASS_ID, 0)))
return Error;
TriObject *tri = (TriObject *)obj->ConvertToType(t, Class_ID(TRIOBJ_CLASS_ID, 0));
if (!tri)
return false;
Mesh *mesh = &tri->GetMesh();
mesh->buildNormals();
// setup shape data
vector<Vector3> verts;
vector<Vector3> vnorms;
Triangles tris;
for (int i=0; i<mesh->getNumFaces(); i++)
addFace(tris, verts, vnorms, i, vi, mesh);
TriStrips strips;
strippify(strips, verts, vnorms, tris);
NiTriStripsDataRef data = makeTriStripsData(strips);
data->SetVertices(verts);
data->SetNormals(vnorms);
// setup shape
bhkNiTriStripsShapeRef shape = DynamicCast<bhkNiTriStripsShape>(CreateBlock("bhkNiTriStripsShape"));
shape->SetNumStripsData(1);
shape->SetStripsData(0, data);
shape->SetMaterial(mtl);
//array<float, 2> unknownFloats1;
//uint i1 = 0x3DCCCCCD;
//uint i2 = 0x004ABE60;
//unknownFloats1[0] = *((float*)&i1);
//unknownFloats1[1] = *((float*)&i2);
//shape->SetUnknownFloats1(unknownFloats1);
//array<float, 3> unknownFloats2;
//unknownFloats2[0] = 1;
//unknownFloats2[1] = 1;
//unknownFloats2[2] = 1;
//shape->SetUnknownFloats2(unknownFloats2);
//array<uint, 5> unknownInts1;
//unknownInts1[4] = 1;
//shape->SetUnknownInts1(unknownInts1);
//vector<uint> unknownInts3;
//unknownInts3.resize(1);
//shape->SetUnknownInts3(unknownInts3);
// setup collision object
bhkCollisionObjectRef co = DynamicCast<bhkCollisionObject>(CreateBlock("bhkCollisionObject"));
// setup body
bhkRigidBodyTRef body = DynamicCast<bhkRigidBodyT>(CreateBlock("bhkRigidBodyT"));
Vector3 trans;
QuaternionXYZW q;
nodeTransform(q, trans, node, t, false);
body->SetRotation(q);
body->SetTranslation(Vector3(trans.x/7, trans.y/7, trans.z/7));
body->SetLayer(lyr);
body->SetLayerCopy(lyr);
body->SetMotionSystem(msys);
body->SetQualityType(qtype);
body->SetMass(mass);
body->SetLinearDamping(lindamp);
body->SetAngularDamping(angdamp);
body->SetFriction(frict);
body->SetRestitution(resti);
body->SetMaxLinearVelocity(maxlinvel);
body->SetMaxAngularVelocity(maxangvel);
body->SetPenetrationDepth(pendepth);
body->SetCenter(center);
// link
parent->SetCollisionObject(DynamicCast<NiCollisionObject>(co));
co->SetParent(parent);
co->SetBody(DynamicCast<NiObject>(body));
body->SetShape(DynamicCast<bhkShape>(shape));
if (obj != tri)
tri->DeleteMe();
return true;
}
Gundalf
committed
*/
Exporter::Result Exporter::exportCollision(NiNodeRef &parent, INode *node)
{
// marked as collision?
bool local = !mFlattenHierarchy;
NiNodeRef nodeParent = mFlattenHierarchy ? mNiRoot : parent;
Gundalf
committed
NiNodeRef newParent;
Gundalf
committed
{
/* NiNodeRef n = DynamicCast<NiNode>(CreateBlock("NiNode"));
parent->AddChild(DynamicCast<NiAVObject>(n));
Matrix33 rot;
Vector3 trans;
TimeValue t = 0;
nodeTransform(rot, trans, node, t);
n->SetLocalRotation(rot);
n->SetLocalTranslation(trans);
string name = (char*)node->GetName();
n->SetName(name);
/* Vector3 trans;
QuaternionXYZW q;
TimeValue t = 0;
nodeTransform(q, trans, node, t, false);
body->SetRotation(q);
body->SetTranslation(Vector3(trans.x/7, trans.y/7, trans.z/7));
*/
newParent = nodeParent; // always have collision one level up?
Gundalf
committed
bhkSphereRepShapeRef shape = makeCollisionShape(node);
bhkRigidBodyRef body = makeCollisionBody(node);
body->SetShape(DynamicCast<bhkShape>(shape));
QuaternionXYZW q;
Vector3 trans;
TimeValue t = 0;
nodeTransform(q, trans, node, t, false);
body->SetRotation(q);
body->SetTranslation(trans / 7.0f);
Gundalf
committed
bhkCollisionObjectRef co = DynamicCast<bhkCollisionObject>(CreateBlock("bhkCollisionObject"));
co->SetBody(DynamicCast<NiObject>(body));
Gundalf
committed
co->SetParent(newParent);
// link
newParent->SetCollisionObject(DynamicCast<NiCollisionObject>(co));
} else if (isCollisionGroup(node) && !mFlattenHierarchy) {
newParent = makeNode(nodeParent, node);
} else {
newParent = nodeParent;
}
Gundalf
committed
for (int i=0; i<node->NumberOfChildren(); i++)
{
Result result = exportCollision(newParent, node->GetChildNode(i));
if (result!=Ok && result!=Skip)
return result;
}
return Ok;
}
bhkRigidBodyRef Exporter::makeCollisionBody(INode *node)
{
// get data from node
int lyr, mtl, msys, qtype;
float mass, lindamp, angdamp, frict, maxlinvel, maxangvel, resti, pendepth;
Vector3 center;
// Handle compatibility
npGetProp(node, NP_HVK_MASS_OLD, mass, NP_DEFAULT_HVK_EMPTY);
if (mass == NP_DEFAULT_HVK_EMPTY)
npGetProp(node, NP_HVK_MASS, mass, NP_DEFAULT_HVK_MASS);
npGetProp(node, NP_HVK_FRICTION_OLD, frict, NP_DEFAULT_HVK_EMPTY);
if (frict == NP_DEFAULT_HVK_EMPTY)
npGetProp(node, NP_HVK_FRICTION, frict, NP_DEFAULT_HVK_FRICTION);
npGetProp(node, NP_HVK_RESTITUTION_OLD, resti, NP_DEFAULT_HVK_EMPTY);
if (resti == NP_DEFAULT_HVK_EMPTY)
npGetProp(node, NP_HVK_RESTITUTION, resti, NP_DEFAULT_HVK_RESTITUTION);
Gundalf
committed
npGetProp(node, NP_HVK_LAYER, lyr, NP_DEFAULT_HVK_LAYER);
npGetProp(node, NP_HVK_MATERIAL, mtl, NP_DEFAULT_HVK_MATERIAL);
npGetProp(node, NP_HVK_MOTION_SYSTEM, msys, NP_DEFAULT_HVK_MOTION_SYSTEM);
npGetProp(node, NP_HVK_QUALITY_TYPE, qtype, NP_DEFAULT_HVK_QUALITY_TYPE);
npGetProp(node, NP_HVK_LINEAR_DAMPING, lindamp, NP_DEFAULT_HVK_LINEAR_DAMPING);
npGetProp(node, NP_HVK_ANGULAR_DAMPING, angdamp, NP_DEFAULT_HVK_ANGULAR_DAMPING);
npGetProp(node, NP_HVK_MAX_LINEAR_VELOCITY, maxlinvel, NP_DEFAULT_HVK_MAX_LINEAR_VELOCITY);
npGetProp(node, NP_HVK_MAX_ANGULAR_VELOCITY, maxangvel, NP_DEFAULT_HVK_MAX_ANGULAR_VELOCITY);
npGetProp(node, NP_HVK_PENETRATION_DEPTH, pendepth, NP_DEFAULT_HVK_PENETRATION_DEPTH);
npGetProp(node, NP_HVK_CENTER, center);
// setup body
bhkRigidBodyRef body = DynamicCast<bhkRigidBody>(CreateBlock("bhkRigidBodyT"));
Gundalf
committed
body->SetLayer(lyr);
body->SetLayerCopy(lyr);
body->SetMotionSystem(msys);
body->SetQualityType(qtype);
body->SetMass(mass);
body->SetLinearDamping(lindamp);
body->SetAngularDamping(angdamp);
body->SetFriction(frict);
body->SetRestitution(resti);
body->SetMaxLinearVelocity(maxlinvel);
body->SetMaxAngularVelocity(maxangvel);
body->SetPenetrationDepth(pendepth);
body->SetCenter(center);
QuaternionXYZW q; q.x = q.y = q.z = 0; q.w = 1.0f;
body->SetRotation(q);
Gundalf
committed
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
return body;
}
bhkSphereRepShapeRef Exporter::makeCollisionShape(INode *node)
{
bhkSphereRepShapeRef shape;
TimeValue t = 0;
ObjectState os = node->EvalWorldState(t);
if (os.obj->ClassID() == SCUBA_CLASS_ID)
shape = makeCapsuleShape(os.obj);
else
if (os.obj->ClassID() == Class_ID(BOXOBJ_CLASS_ID, 0))
shape = makeBoxShape(os.obj);
else
if (os.obj->ClassID() == Class_ID(SPHERE_CLASS_ID, 0))
shape = makeSphereShape(os.obj);
else
if (os.obj->SuperClassID() == GEOMOBJECT_CLASS_ID)
shape = makeTriStripsShape(node);
if (shape)
{
int mtl;
npGetProp(node, NP_HVK_MATERIAL, mtl, NP_DEFAULT_HVK_MATERIAL);
shape->SetMaterial(mtl);
}
return shape;
}
bhkSphereRepShapeRef Exporter::makeBoxShape(Object *obj)
{
float length = 0;
float height = 0;
float width = 0;
IParamArray *params = obj->GetParamBlock();
params->GetValue(obj->GetParamBlockIndex(BOXOBJ_LENGTH), 0, length, FOREVER);
params->GetValue(obj->GetParamBlockIndex(BOXOBJ_HEIGHT), 0, height, FOREVER);
params->GetValue(obj->GetParamBlockIndex(BOXOBJ_WIDTH), 0, width, FOREVER);
bhkBoxShapeRef box = DynamicCast<bhkBoxShape>(CreateBlock("bhkBoxShape"));
box->SetDimensions(Vector3(width, height, length));
return bhkSphereRepShapeRef(DynamicCast<bhkSphereRepShape>(box));
}
bhkSphereRepShapeRef Exporter::makeSphereShape(Object *obj)
{
float radius = 0;
IParamArray *params = obj->GetParamBlock();
params->GetValue(obj->GetParamBlockIndex(SPHERE_RADIUS), 0, radius, FOREVER);
bhkSphereShapeRef sphere = DynamicCast<bhkSphereShape>(CreateBlock("bhkSphereShape"));
sphere->SetRadius(radius);
return bhkSphereRepShapeRef(DynamicCast<bhkSphereRepShape>(sphere));
}
bhkSphereRepShapeRef Exporter::makeCapsuleShape(Object *obj)
{
float radius = 0;
float height = 0;
IParamArray *params = obj->GetParamBlock();
params->GetValue(obj->GetParamBlockIndex(CAPSULE_RADIUS), 0, radius, FOREVER);
params->GetValue(obj->GetParamBlockIndex(CAPSULE_HEIGHT), 0, height, FOREVER);
bhkCapsuleShapeRef capsule = DynamicCast<bhkCapsuleShape>(CreateBlock("bhkCapsuleShape"));
return bhkSphereRepShapeRef(DynamicCast<bhkSphereRepShape>(capsule));
}
bhkSphereRepShapeRef Exporter::makeTriStripsShape(INode *node)
{
TimeValue t = 0;
Matrix3 tm = node->GetObjTMAfterWSM(t);
// Order of the vertices. Get 'em counter clockwise if the objects is
// negatively scaled.
int vi[3];
if (TMNegParity(tm))
{
vi[0] = 2;
vi[1] = 1;
vi[2] = 0;
} else
{
vi[0] = 0;
vi[1] = 1;
vi[2] = 2;
}
ObjectState os = node->EvalWorldState(t);
TriObject *tri = (TriObject *)os.obj->ConvertToType(t, Class_ID(TRIOBJ_CLASS_ID, 0));
if (!tri)
return false;
Mesh *mesh = &tri->GetMesh();
mesh->buildNormals();
// setup shape data
vector<Vector3> verts;
vector<Vector3> vnorms;
Triangles tris;
for (int i=0; i<mesh->getNumFaces(); i++)
addFace(tris, verts, vnorms, i, vi, mesh);
TriStrips strips;
strippify(strips, verts, vnorms, tris);
NiTriStripsDataRef data = makeTriStripsData(strips);
data->SetVertices(verts);
data->SetNormals(vnorms);
// setup shape
bhkNiTriStripsShapeRef shape = DynamicCast<bhkNiTriStripsShape>(CreateBlock("bhkNiTriStripsShape"));
shape->SetNumStripsData(1);
shape->SetStripsData(0, data);
/*
array<float, 2> unknownFloats1;
uint i1 = 0x3DCCCCCD;
uint i2 = 0x004ABE60;
unknownFloats1[0] = *((float*)&i1);
unknownFloats1[1] = *((float*)&i2);
shape->SetUnknownFloats1(unknownFloats1);
array<float, 3> unknownFloats2;
unknownFloats2[0] = 1;
unknownFloats2[1] = 1;
unknownFloats2[2] = 1;
shape->SetUnknownFloats2(unknownFloats2);
*/
/* array<uint, 5> unknownInts1;
unknownInts1[4] = 1;
shape->SetUnknownInts1(unknownInts1);
*/
Gundalf
committed
vector<uint> unknownInts2;
unknownInts2.resize(1);
shape->SetUnknownInts2(unknownInts2);