Newer
Older
/*
* Copyright © 2011 Siarhei Siamashka <siarhei.siamashka@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <string.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#ifdef __linux__
#include <unistd.h>
#include <fcntl.h>
#include <linux/fb.h>
#include <sys/mman.h>
#endif
#include "asm-opt.h"
#define SIZE (32 * 1024 * 1024)
#ifndef MAXREPEATS
# define MAXREPEATS 10
#endif
#ifndef LATBENCH_COUNT
# define LATBENCH_COUNT 10000000
#endif
#ifdef __linux__
static void *mmap_framebuffer(size_t *fbsize)
{
int fd;
void *p;
struct fb_fix_screeninfo finfo;
if ((fd = open("/dev/fb0", O_RDWR)) == -1)
if ((fd = open("/dev/graphics/fb0", O_RDWR)) == -1)
return NULL;
if (ioctl(fd, FBIOGET_FSCREENINFO, &finfo))
return NULL;
p = mmap(0, finfo.smem_len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if (p == (void *)-1)
return NULL;
*fbsize = finfo.smem_len;
return p;
}
#endif
static double bandwidth_bench_helper(int64_t *dstbuf, int64_t *srcbuf,
int64_t *tmpbuf,
int size, int blocksize,
const char *indent_prefix,
int use_tmpbuf,
void (*f)(int64_t *, int64_t *, int),
const char *description)
int i, j, loopcount, innerloopcount, n;
double t1, t2;
double speed, maxspeed;
double s, s0, s1, s2;
/* do up to MAXREPEATS measurements */
s0 = s1 = s2 = 0;
maxspeed = 0;
for (n = 0; n < MAXREPEATS; n++)
f(dstbuf, srcbuf, size);
loopcount = 0;
innerloopcount = 1;
loopcount += innerloopcount;
{
for (i = 0; i < innerloopcount; i++)
for (j = 0; j < size; j += blocksize)
{
f(tmpbuf, srcbuf + j / sizeof(int64_t), blocksize);
f(dstbuf + j / sizeof(int64_t), tmpbuf, blocksize);
}
}
for (i = 0; i < innerloopcount; i++)
{
f(dstbuf, srcbuf, size);
}
innerloopcount *= 2;
t2 = gettime();
} while (t2 - t1 < 0.5);
speed = (double)size * loopcount / (t2 - t1) / 1000000.;
s0 += 1;
s1 += speed;
s2 += speed * speed;
if (speed > maxspeed)
maxspeed = speed;
if (s0 > 2)
{
s = sqrt((s0 * s2 - s1 * s1) / (s0 * (s0 - 1)));
if (s < maxspeed / 1000.)
break;
if (s / maxspeed * 100. >= 0.1)
{
printf("%s%-52s : %8.1f MB/s (%.1f%%)\n", indent_prefix, description,
maxspeed, s / maxspeed * 100.);
}
else
{
printf("%s%-52s : %8.1f MB/s\n", indent_prefix, description, maxspeed);
}
return maxspeed;
}
void memcpy_wrapper(int64_t *dst, int64_t *src, int size)
{
memcpy(dst, src, size);
}
void memset_wrapper(int64_t *dst, int64_t *src, int size)
{
memset(dst, src[0], size);
}
static bench_info c_benchmarks[] =
{
{ "C copy backwards", 0, aligned_block_copy_backwards },
{ "C copy backwards (32 byte blocks)", 0, aligned_block_copy_backwards_bs32 },
{ "C copy backwards (64 byte blocks)", 0, aligned_block_copy_backwards_bs64 },
{ "C copy", 0, aligned_block_copy },
{ "C copy prefetched (32 bytes step)", 0, aligned_block_copy_pf32 },
{ "C copy prefetched (64 bytes step)", 0, aligned_block_copy_pf64 },
{ "C 2-pass copy", 1, aligned_block_copy },
{ "C 2-pass copy prefetched (32 bytes step)", 1, aligned_block_copy_pf32 },
{ "C 2-pass copy prefetched (64 bytes step)", 1, aligned_block_copy_pf64 },
{ "C fill", 0, aligned_block_fill },
{ "C fill (shuffle within 16 byte blocks)", 0, aligned_block_fill_shuffle16 },
{ "C fill (shuffle within 32 byte blocks)", 0, aligned_block_fill_shuffle32 },
{ "C fill (shuffle within 64 byte blocks)", 0, aligned_block_fill_shuffle64 },
{ NULL, 0, NULL }
};
static bench_info libc_benchmarks[] =
{
{ "standard memcpy", 0, memcpy_wrapper },
{ "standard memset", 0, memset_wrapper },
{ NULL, 0, NULL }
};
void bandwidth_bench(int64_t *dstbuf, int64_t *srcbuf, int64_t *tmpbuf,
int size, int blocksize, const char *indent_prefix,
bench_info *bi)
{
while (bi->f)
{
bandwidth_bench_helper(dstbuf, srcbuf, tmpbuf, size, blocksize,
indent_prefix, bi->use_tmpbuf,
bi->f,
bi->description);
bi++;
}
static void __attribute__((noinline)) random_read_test(char *zerobuffer,
int count, int nbits)
{
uint32_t seed = 0;
uintptr_t addrmask = (1 << nbits) - 1;
uint32_t v;
static volatile uint32_t dummy;
#ifdef __arm__
uint32_t tmp;
__asm__ volatile (
"subs %[count], %[count], #16\n"
"blt 1f\n"
"0:\n"
"subs %[count], %[count], #16\n"
".rept 16\n"
"mla %[seed], %[c1103515245], %[seed], %[c12345]\n"
"and %[v], %[xFF], %[seed], lsr #16\n"
"mla %[seed], %[c1103515245], %[seed], %[c12345]\n"
"and %[tmp], %[xFF00], %[seed], lsr #8\n"
"mla %[seed], %[c1103515245], %[seed], %[c12345]\n"
"orr %[v], %[v], %[tmp]\n"
"and %[tmp], %[x7FFF0000], %[seed]\n"
"orr %[v], %[v], %[tmp]\n"
"and %[v], %[v], %[addrmask]\n"
"ldrb %[v], [%[zerobuffer], %[v]]\n"
"orr %[seed], %[seed], %[v]\n"
".endr\n"
"bge 0b\n"
"1:\n"
"add %[count], %[count], #16\n"
: [count] "+&r" (count),
[seed] "+&r" (seed), [v] "=&r" (v),
[tmp] "=&r" (tmp)
: [c1103515245] "r" (1103515245), [c12345] "r" (12345),
[xFF00] "r" (0xFF00), [xFF] "r" (0xFF),
[x7FFF0000] "r" (0x7FFF0000),
[zerobuffer] "r" (zerobuffer),
[addrmask] "r" (addrmask)
: "cc");
#define RANDOM_MEM_ACCESS() \
seed = seed * 1103515245 + 12345; \
v = (seed >> 16) & 0xFF; \
seed = seed * 1103515245 + 12345; \
v |= (seed >> 8) & 0xFF00; \
v |= seed & 0x7FFF0000; \
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
count -= 16;
}
#undef RANDOM_MEM_ACCESS
}
static void __attribute__((noinline)) random_dual_read_test(char *zerobuffer,
int count, int nbits)
{
uint32_t seed = 0;
uintptr_t addrmask = (1 << nbits) - 1;
uint32_t v1, v2;
static volatile uint32_t dummy;
#ifdef __arm__
uint32_t tmp;
__asm__ volatile (
"subs %[count], %[count], #16\n"
"blt 1f\n"
"0:\n"
"subs %[count], %[count], #16\n"
".rept 16\n"
"mla %[seed], %[c1103515245], %[seed], %[c12345]\n"
"and %[v1], %[xFF00], %[seed], lsr #8\n"
"mla %[seed], %[c1103515245], %[seed], %[c12345]\n"
"and %[v2], %[xFF00], %[seed], lsr #8\n"
"mla %[seed], %[c1103515245], %[seed], %[c12345]\n"
"and %[tmp], %[x7FFF0000], %[seed]\n"
"mla %[seed], %[c1103515245], %[seed], %[c12345]\n"
"orr %[v1], %[v1], %[tmp]\n"
"and %[tmp], %[x7FFF0000], %[seed]\n"
"mla %[seed], %[c1103515245], %[seed], %[c12345]\n"
"orr %[v2], %[v2], %[tmp]\n"
"and %[tmp], %[xFF], %[seed], lsr #16\n"
"orr %[v2], %[v2], %[seed], lsr #24\n"
"orr %[v1], %[v1], %[tmp]\n"
"and %[v2], %[v2], %[addrmask]\n"
"eor %[v1], %[v1], %[v2]\n"
"and %[v1], %[v1], %[addrmask]\n"
"ldrb %[v2], [%[zerobuffer], %[v2]]\n"
"ldrb %[v1], [%[zerobuffer], %[v1]]\n"
"orr %[seed], %[seed], %[v2]\n"
"add %[seed], %[seed], %[v1]\n"
".endr\n"
"bge 0b\n"
"1:\n"
"add %[count], %[count], #16\n"
: [count] "+&r" (count),
[seed] "+&r" (seed), [v1] "=&r" (v1), [v2] "=&r" (v2),
[tmp] "=&r" (tmp)
: [c1103515245] "r" (1103515245), [c12345] "r" (12345),
[xFF00] "r" (0xFF00), [xFF] "r" (0xFF),
[x7FFF0000] "r" (0x7FFF0000),
[zerobuffer] "r" (zerobuffer),
[addrmask] "r" (addrmask)
: "cc");
#define RANDOM_MEM_ACCESS() \
seed = seed * 1103515245 + 12345; \
v1 = (seed >> 8) & 0xFF00; \
seed = seed * 1103515245 + 12345; \
v2 = (seed >> 8) & 0xFF00; \
seed = seed * 1103515245 + 12345; \
v1 |= seed & 0x7FFF0000; \
seed = seed * 1103515245 + 12345; \
v2 |= seed & 0x7FFF0000; \
seed = seed * 1103515245 + 12345; \
v1 |= (seed >> 16) & 0xFF; \
v2 |= (seed >> 24); \
v2 &= addrmask; \
v1 ^= v2; \
seed |= zerobuffer[v2]; \
seed += zerobuffer[v1 & addrmask];
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
RANDOM_MEM_ACCESS();
count -= 16;
}
dummy = seed;
#undef RANDOM_MEM_ACCESS
static uint32_t rand32()
{
static int seed = 0;
uint32_t hi, lo;
hi = (seed = seed * 1103515245 + 12345) >> 16;
lo = (seed = seed * 1103515245 + 12345) >> 16;
return (hi << 16) + lo;
}
int latency_bench(int size, int count, int use_hugepage)
double t, t2, t_before, t_after, t_noaccess, t_noaccess2;
double xs, xs0, xs1, xs2;
double ys, ys0, ys1, ys2;
double min_t, min_t2;
int nbits, n;
#if !defined(__linux__) || !defined(MADV_HUGEPAGE)
if (use_hugepage)
return 0;
buffer_alloc = (char *)malloc(size + 4095);
if (!buffer_alloc)
return 0;
buffer = (char *)(((uintptr_t)buffer_alloc + 4095) & ~(uintptr_t)4095);
#else
if (posix_memalign((void **)&buffer_alloc, 4 * 1024 * 1024, size) != 0)
return 0;
buffer = buffer_alloc;
if (use_hugepage && madvise(buffer, size, use_hugepage > 0 ?
MADV_HUGEPAGE : MADV_NOHUGEPAGE) != 0)
{
free(buffer_alloc);
return 0;
}
#endif
for (n = 1; n <= MAXREPEATS; n++)
random_read_test(buffer, count, 1);
if (n == 1 || t_after - t_before < t_noaccess)
t_noaccess = t_after - t_before;
random_dual_read_test(buffer, count, 1);
if (n == 1 || t_after - t_before < t_noaccess2)
t_noaccess2 = t_after - t_before;
}
printf("\nblock size : single random read / dual random read");
if (use_hugepage > 0)
printf(", [MADV_HUGEPAGE]\n");
else if (use_hugepage < 0)
printf(", [MADV_NOHUGEPAGE]\n");
else
printf("\n");
for (nbits = 10; (1 << nbits) <= size; nbits++)
int testsize = 1 << nbits;
xs1 = xs2 = ys = ys1 = ys2 = 0;
for (n = 1; n <= MAXREPEATS; n++)
{
/*
* Select a random offset in order to mitigate the unpredictability
* of cache associativity effects when dealing with different
* physical memory fragmentation (for PIPT caches). We are reporting
* the "best" measured latency, some offsets may be better than
* the others.
*/
int testoffs = (rand32() % (size / testsize)) * testsize;
t_before = gettime();
random_read_test(buffer + testoffs, count, nbits);
t_after = gettime();
t = t_after - t_before - t_noaccess;
if (t < 0) t = 0;
xs1 += t;
xs2 += t * t;
if (n == 1 || t < min_t)
min_t = t;
t_before = gettime();
random_dual_read_test(buffer + testoffs, count, nbits);
t_after = gettime();
t2 = t_after - t_before - t_noaccess2;
if (t2 < 0) t2 = 0;
ys1 += t2;
ys2 += t2 * t2;
if (n == 1 || t2 < min_t2)
min_t2 = t2;
if (n > 2)
{
xs = sqrt((xs2 * n - xs1 * xs1) / (n * (n - 1)));
ys = sqrt((ys2 * n - ys1 * ys1) / (n * (n - 1)));
if (xs < min_t / 1000. && ys < min_t2 / 1000.)
break;
}
}
printf("%10d : %6.1f ns / %6.1f ns \n", (1 << nbits),
min_t * 1000000000. / count, min_t2 * 1000000000. / count);
return 1;
int latbench_size = SIZE * 2, latbench_count = LATBENCH_COUNT;
int64_t *srcbuf, *dstbuf, *tmpbuf;
size_t bufsize = SIZE;
#ifdef __linux__
size_t fbsize = 0;
int64_t *fbbuf = mmap_framebuffer(&fbsize);
fbsize = (fbsize / BLOCKSIZE) * BLOCKSIZE;
#endif
printf("tinymembench v" VERSION " (simple benchmark for memory throughput and latency)\n");
poolbuf = alloc_four_nonaliased_buffers((void **)&srcbuf, bufsize,
(void **)&dstbuf, bufsize,
printf("==========================================================================\n");
printf("== Memory bandwidth tests ==\n");
printf("== ==\n");
printf("== Note 1: 1MB = 1000000 bytes ==\n");
printf("== Note 2: Results for 'copy' tests show how many bytes can be ==\n");
printf("== copied per second (adding together read and writen ==\n");
printf("== bytes would have provided twice higher numbers) ==\n");
printf("== Note 3: 2-pass copy means that we are using a small temporary buffer ==\n");
printf("== to first fetch data into it, and only then write it to the ==\n");
printf("== destination (source -> L1 cache, L1 cache -> destination) ==\n");
printf("== Note 4: If sample standard deviation exceeds 0.1%%, it is shown in ==\n");
printf("== brackets ==\n");
printf("==========================================================================\n\n");
bandwidth_bench(dstbuf, srcbuf, tmpbuf, bufsize, BLOCKSIZE, " ", c_benchmarks);
printf(" ---\n");
bandwidth_bench(dstbuf, srcbuf, tmpbuf, bufsize, BLOCKSIZE, " ", libc_benchmarks);
bench_info *bi = get_asm_benchmarks();
if (bi->f) {
printf(" ---\n");
bandwidth_bench(dstbuf, srcbuf, tmpbuf, bufsize, BLOCKSIZE, " ", bi);
}
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
#ifdef __linux__
bi = get_asm_framebuffer_benchmarks();
if (bi->f && fbbuf)
{
printf("\n");
printf("==========================================================================\n");
printf("== Framebuffer read tests. ==\n");
printf("== ==\n");
printf("== Many ARM devices use a part of the system memory as the framebuffer, ==\n");
printf("== typically mapped as uncached but with write-combining enabled. ==\n");
printf("== Writes to such framebuffers are quite fast, but reads are much ==\n");
printf("== slower and very sensitive to the alignment and the selection of ==\n");
printf("== CPU instructions which are used for accessing memory. ==\n");
printf("== ==\n");
printf("== Many x86 systems allocate the framebuffer in the GPU memory, ==\n");
printf("== accessible for the CPU via a relatively slow PCI-E bus. Moreover, ==\n");
printf("== PCI-E is asymmetric and handles reads a lot worse than writes. ==\n");
printf("== ==\n");
printf("== If uncached framebuffer reads are reasonably fast (at least 100 MB/s ==\n");
printf("== or preferably >300 MB/s), then using the shadow framebuffer layer ==\n");
printf("== is not necessary in Xorg DDX drivers, resulting in a nice overall ==\n");
printf("== performance improvement. For example, the xf86-video-fbturbo DDX ==\n");
printf("== uses this trick. ==\n");
printf("==========================================================================\n\n");
srcbuf = fbbuf;
if (bufsize > fbsize)
bufsize = fbsize;
bandwidth_bench(dstbuf, srcbuf, tmpbuf, bufsize, BLOCKSIZE, " ", bi);
}
#endif
printf("==========================================================================\n");
printf("== Memory latency test ==\n");
printf("== ==\n");
printf("== Average time is measured for random memory accesses in the buffers ==\n");
printf("== of different sizes. The larger is the buffer, the more significant ==\n");
printf("== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==\n");
printf("== accesses. For extremely large buffer sizes we are expecting to see ==\n");
printf("== page table walk with several requests to SDRAM for almost every ==\n");
printf("== memory access (though 64MiB is not nearly large enough to experience ==\n");
printf("== this effect to its fullest). ==\n");
printf("== ==\n");
printf("== Note 1: All the numbers are representing extra time, which needs to ==\n");
printf("== be added to L1 cache latency. The cycle timings for L1 cache ==\n");
printf("== latency can be usually found in the processor documentation. ==\n");
printf("== Note 2: Dual random read means that we are simultaneously performing ==\n");
printf("== two independent memory accesses at a time. In the case if ==\n");
printf("== the memory subsystem can't handle multiple outstanding ==\n");
printf("== requests, dual random read has the same timings as two ==\n");
printf("== single reads performed one after another. ==\n");
printf("==========================================================================\n");
if (!latency_bench(latbench_size, latbench_count, -1) ||
!latency_bench(latbench_size, latbench_count, 1))
{
latency_bench(latbench_size, latbench_count, 0);
}